Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Session Title

Pre and Post Combustion CO₂ Capture Strategies Using Membranes

Richard A. Callahan Enerfex, Inc.

Kevin C. O'Brien SRI Consulting

Robert R. Dill Specialty Filaments, Inc.

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

Post Combustion Membrane Capture

- Existing & future pulverized coal plant flue gas
- Membranes selectively permeate CO₂, NO_x & SO_x & retain N₂
- Economics driven by permeability & selectivity
- Higher permeability lowers membrane capital
- Higher selectivity lowers capture power

Enerfex, Inc.

- Company Formed 1992
- Membrane Project Areas:
 - Design Process simulation
 - Plant & Pilot Skid Design & Fabrication
 - Natural Gas Well Head
 CO₂ removal
 - Fuel Cells Natural gas N₂ content reduction
 - DOE Industrial NH₃ refrigerant membrane
 - NASA Mars atmosphere utilization membrane
- Several U.S. & foreign patents issued & pending

Fuel Cell N₂ Reduction Membrane Separation Unit (MSU) to prevent electrolyte NH₃ poisoning

SRI International

Independent R&D organization known for commercialization of new technologies

SRI headquarters, Menlo

Sarnoff Corporation, Princeton, NJ

- Sarnoff India
- SRI Taiwan

- A nonprofit corporation
- Independent in 1970; changed name from Stanford Research Institute to SRI International in 1977
- Sarnoff Corporation acquired in 1987
 - 2,000 staff members combined
 - 800 with advanced degrees
 - More than 15 offices worldwide
- Consolidated 2005 revenue: \$390 million
- Multidisciplinary teams formed to commercialize technologies

SRI - State College, PA

SRI – Tokyo, Japan

SRI - Washington, D.C.

Lawrence Livermore National Laboratory

Managed by the University of California for the Department of Energy

Employees Capital Plant: \$4B

LLNL: 7,250 Other: 750

Annual Operating and Capital funds: ~\$1.6B/yr

Site for National Ignition Facility (NIF)

LLNL Mission:

Ensuring national security and applying science and technology to the important problems of our time

Specialty Filaments, Inc.

- Operating since 1873
- Have produced hollow fibers since 1970
- Several US and Foreign patents covering hollow fibers

POST Combustion Capture At EXISTING Power Plants Creates A Near Term Opportunity

Ash Removal System

- Peak Power output available by bypassing capture system during peak demand
- Does NOT create additional "consumables" or require waste disposal
- "Low risk" from an engineering perspective, i.e. basis of process is an established industrial separation process
- Located downstream from existing process with little impact on existing process
- Power Plant suggests locating MSU between scrubber & stack
- Stack Gas Temperatures of 125-135°F (50-60°C)

Post Combustion System Design

- Enerfex, Inc. patented MSU system is the most economic approach
- First Stage: High permeability and high recovery MSU
- Second Stage: High selectivity and High Purity MSU

Existing Plant Identified as Potential Location for Post Combustion Capture System

- Proposed demonstration site would be coal-fired Navajo Generating Station or Coronado Plant near Navajo Nation
- System located between scrubber & stack based on discussions with plant engineers

Stack & Scrubber At Navajo Generating Station

Pathway to Pilot Scale Test at Power Plant

Integrate Turbo
Compressor with
Skid and Produce
SLIP coated Fiber

Year 1

Fabricate SLIP
Membrane Module,
integrate into skid and
evaluate in controlled
setting

Deploy and Test Skid at Power Plant

Year 2

Year 3

Advanced Gas Separation Membranes Lower Cost of Carbon Capture

Schematic of working membrane module

Target Cost expected to be 65% lower than conventional aminebased technologies

SLIP Post Combustion Capture Economics

- Basis 500 MW pulverized coal power plant
- Base plant on-site power cost: \$35/MWH
- Capture plant cost w/ NOx/SOx Cr.: \$42.50/MWH
- Tons CO₂ emission / MWH w/o capture: 0.813
- Tons CO₂ emission / MWH w/ capture: 0.182
- Capture cost \$/ ton CO₂ avoided: \$11.90
- Storage compression cost \$/ ton CO₂ avoided: \$3.70
- Combined cost \$/ ton CO₂ avoided: \$15.60

Flexible Pairing of Post Combustion Membrane With a Steam Cycle

Features and Benefits:

- The non-chemical MSU can be shutdown and restarted quickly.
- Quick shutdown and restart of the MSU enables a coal power plant to supply base and peak load power.
- Fuel would be Powder River (PWR) coal at \$0.95/ Million BTU instead of a separate peak load power plant fueled by gas or oil at \$7.00/ Million BTU.

Pre Combustion Carbon Capture

- Coal gasification syngas
- Membrane selectively permeates H₂ & retains
 CO & CO₂
- Economics driven by permeability & selectivity in the membrane for H2 over CO & CO₂
- Higher permeability lowers membrane capital
- Higher selectivity lowers capture power

IGCC With Membrane Carbon Capture 35.0% H₂ 52.0% CO 11.0% CO₂ 1.0% N₂ Sulfur 0.6% H₂S Recovery 0.3% Ar 0.1% COS, HCN **Cooling** Membrane **AGR Gasifier** Scrubbing Flue **Separation Unit** (MSU) **ASU HRSG** $H_2 + (CO_2, CO)$ $CO + (CO_2, H_2)$ **EXP** O_2 **Condensate HRSG Steam** EGR $CO_2 + (O_2)$ Carbon dioxide Air -**Compression & Sequestration**

Pre Combustion Membrane Features

- Removes WGS reactor unit
- Removes Selexol CO₂ Unit
- Adds an MSU
- Increases ASU capacity

Pre Combustion Membrane Benefits

- MSU carbon capture system reduces capital and thermal demand increasing IGCC efficiency
- MSU carbon capture system eliminates the possibility of H₂ loss in the CO₂ solvent stripper
- MSU carbon capture system cost goal is <\$10.00 /ton CO₂ avoided

Pre Combustion Membrane Vs. WGS & Solvent Absorption Considerations

- Added O₂ cost is \$2.55/ton CO₂ captured
- Saved 5% H₂ loss is \$2.50/ton CO₂ captured
- Added challenge to design CO fueled gas turbine in addition to a H₂ fueled gas turbine

Summary

- Advanced and current membranes have applications for both Post and Pre Combustion respectively
- Post combustion methods utilizing advanced
 SLIP based membranes show promise for CO₂
 capture in existing Pulverized Coal facilities
- Pre combustion methods utilizing existing membranes are economic today
- Economics of pre combustion will improve utilizing SLIP membranes